### Attached Files

The following files have been attached to this tutorial:

.capx

### Stats

4,541 visits, 9,867 views

### Translations

This tutorial hasn't been translated.

## Introduction

Circular motion is a constant topic in the forums, so, I decided to put together a simple and direct tutorial covering the basics.

See the attached .capx file.

First things first, there are some basic elements of circles that you'll need to understand.

Diameter (D): the length of a line whose endpoints lie on the circle and which passes through its center.

Radius (R): the length a line which joins the center of the circle to any point on the circle itself. It measures half the Diameter.

Pi (π): a mathematical constant. There's a System Expression in Construct 2, called pi (isn't that awesome?), for that.

Circumference (C): the length of one circuit along the circle. It measures the diameter times Pi (D x π or 2 x π x R).

In order to achieve the desired effect, we need to move the avatar, represented in our tutorial by the cute little moons and the devil moon, in a way that the distance to a fixed point (the Radius) is constant, thus, making a circular pathway.

Here's how we control the Radius! There are two main elements that will affect the radius of the pathway in circular motion:

Speed (spd): the amount of pixels the avatar moves in a tick. The higher the Speed, the longer the Radius.

Rotation (rot): the amount of degrees the avatar rotates in a tick. The higher the Rotation the shorter the Radius.